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Abstract. It is shown that the nonlinear equations governing the dynamics of the large amplitude waves
in a self-gravitating unmagnetized collisionless dust-electron-ion plasma admit stationary dust-acoustic
shock solutions. Owing to the adiabaticity of dust-charge variation, inclusion of self-gravitation, and to
the departure from the so-called Botzmannian electrons and ions to the trapped electrons and nonthermal
ions, the dynamics of the nonlinear wave is found to be governed by a new energy-like integral equation.

PACS. 52.35.Sb Solitons; BGK modes – 52.30.Ex Two-fluid and multi-fluid plasmas – 52.35.-g Waves,
oscillations, and instabilities in plasmas and intense beams – 52.35.Mw Nonlinear phenomena: waves, wave
propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects,
etc.)

1 Introduction

Interests in the field of dusty plasma physics have rapidly
been growing because of their versatile applications to
laboratory, space and astrophysical plasma environments,
viz. asteroid zones, planatery rings, cometary tails, in-
terstellar medium, earth’s environments etc. In reality,
the charge on the dust grain varies both with space and
time due to the electron and ion currents flowing into or
out of the dust grain, as well as other processes like sec-
ondary emission, photo-emission of electrons. These lead
to dust charge fluctuations. The mass of an individual
isolated dust grain is typically about 106–1012 times the
ion mass, and hence the mass of dusty plasma is essen-
tially contained in the dust grains. The presence of such
fairly massive gives rise a new ultra low-frequency regime
for the existence of different types of acoustic modes in
dusty plasmas, which do not exist in the usual electron-ion
plasmas. One such important mode is the dust-acoustic
mode, which is an eigen mode of the dust-electron-ion
plasma where the charged dust grains provide the iner-
tia and the pressures of inertialess electrons and ions pro-
vide the restoring force [1–19]. Thus, the dust-acoustic
waves (DAW) appear on a kinetic level, which have been
visualized by the naked eye in several laboratory exper-
iments [20–24]. Typical images of the DAWs reveal that
the waves are of large amplitudes and their wave fronts
are steepened. It has been found that the harmonic gener-
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ated nonlinearity gives rise to small amplitude DA solitary
waves which are governed by the Kortewg-de-Vries (KdV)
equations [20,25], whereas the large amplitude DA solitary
waves are shown to exist in the steady state only [17,26].
It has been suggested that the high-speed streaming parti-
cles excite various kind of nonlinear waves in space [27,28].
It may be noted that the existence of dust acoustic wave
on a slow time scale was first investigated by Rao et al. [1]
who showed the formation of rarefactive type soliton in
a simple dusty plasma. Several authors have investigated
similar phenomena by considering dust charge dynamics
and using reductive perturbation method [29].

The gravitational effects become important when the
sizes of the dust grains become considerable. For too small
grains, trapping by magnetic field lines dominates much as
it does for other plasma particles. Too large grains on the
other hand follow gravitationally bound orbits, without
being distracted from them by electromagnetic forces. In
plasmas like protostellar clouds, there may be competition
between the gravitational self-attraction and electrostatic
repulsion between the grains. When self-gravitational in-
teraction due to the behaviour dust component is in-
cluded, dusty plasmas are subject to macroscopic insta-
bilities of the Jeans type [30–33]. Physically, the Jeans
instability of a massive system aries due to the purely
attractive gravitational force, which is unlike the electro-
magnetic force.

Shock waves often arise in nature because of a balance
between wave-breaking nonlinear and the combined in-
fluence of dispersive and wave-damping dissipative forces.
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When the dissipation dominates over the dispersion, shock
front exhibits monotonic structure, whereas in the oppo-
site case, the shock transition is of the oscillatory type.
Collisional and collisionless shock waves can appear in
acoustic wave propagation because of friction between the
particles and wave particle interaction. It has been found
that the nonadiabaticity of dust charge variation provides
an alternate physical mechanism causing dissipation and
as a consequence this gives rise to shocks for which both
monotonic and oscillatory structures are possible.

It has been confirmed by computer simulation and ex-
periments that when streaming particles be injected in
plasma, it is found that they often evolve towards a co-
herent trapped particle state, instead of developing into
a turbulent one [34,35]. Also, in the formation of dou-
ble layers [36] and computer simulation [37], the onset
of an electron trapping is seen. It is beyond doubt that
the inclusion of trapped electrons or ions or both give
rise nonlinear phenomena of waves. However, it has re-
cently been found that the electron and ion distributions
play a crucial role in characterizing the physics of non-
linear waves [28,38,39]. They offer considerable increase
in reachness and variety of wave motion which can exist
in plasmas and further influence the conditions required
for the formation of these structures. Moreover, it is also
well known that the electron and ion distributions can
be significantly modified in the presence of large ampli-
tude waves [40]. Also, the inclusion of thermal effects also
affects the nature of wave-particle interaction and possi-
bility of having nonisothermal electron distribution in the
potential well instead of the usual Boltzmann law is often
invoked. The simultaneous presence of trapped and free
electrons can significantly modify the wave propagation
characteristics in collisionless plasmas.

It has been said in reference [28] that when the am-
plitude of nonlinear wave becomes large, electrons are
trapped in the potential trough. As a matter of fact, the
trapping of electrons is not a question of strength of the
amplitude. Even for small amplitudes trapping can occur
and contribute, violating thereby linear wave analysis [41].
Thus inclusion of nonisothermal electrons in the nonlin-
ear wave phenomena is indispensable to consider nonlinear
wave structures. Nejoh [28] investigated large amplitude
electrostatic ion waves by considering dust charge fluctu-
ation and trapped electrons. It was shown there that the
existence of the nonlinear ion waves depends on the Mach
number as well as the ion to electron temperature ratio.
Recently, El-Labany et al. [38,39] derived small ampli-
tude DA solitons and double layers as well as stationary
modes with considering the dust charge dynamics together
with trapped electrons/ions. In reference [39] it was shown
that the two-ion temperature provides the possibility for
the coexistence of rarefactive and compressive DA solitary
structures and double layers. These investigations, how-
ever, where the gravitational force is neglected are valid
only in that plasma regime in which the electrostatic force
is much greater than the gravitational one. In our present
work we have focused our attention to those space and
astrophysical plasma regimes where the gravitational ac-

tion is comparable to or greater than that of electrostatic
one [14,15], and have investigated the nonlinear struc-
tures of large amplitude DA waves in an unmagnetized
self-gravitating warm dusty plasma by incorporating the
effects of trapped electrons as well as the nonisothermal
positive ions with finite temperatures. Although, a number
of papers considered the effect of trapped electrons/ions,
dust charge fluctuations, dust temperatures etc., but none
has so far considered the effects of self-gravitation, trapped
electrons, nonthermal ions, dust temperature, dust charge
fluctuations all together.

Our manuscript is organized as follows: in Section 2,
we present the hydrodynamic equations for the dust fluid
and density distributions for the trapped electrons and
nonthermal ions. Section 3 is devoted to derive a set of
nonlinear differential equations describing the dynamics of
the large amplitude dust waves. In Section 4, the energy-
like equation is derived by the Hamiltonian formulation
in the adiabaticity of dust-charge variation and lastly, the
concluding session is completed in Section 5.

2 Basic equations

We consider an unmagnetized self-gravitating collisionless
plasma consisting of extremely massive and highly nega-
tively charged warm dust grains of equal radii, positively
charged nonisothermal ions together with free and trapped
electrons. Thus, at equilibrium the overall charge neutral-
ity condition reads

ni0 = ne0 + Zd0nd0 (1)

where nj0 with j = e, i, d respectively stand for unper-
turbed number densities for electron, ion and dust, and
Zd0 is the number of electrons residing on the dust grain
surface. The nonlinear dynamics of the DA waves in such
a dusty plasma is governed by

∂nd

∂t
+

∂

∂x
(ndud) = 0 (2)

∂ud

∂t
+ ud

∂ud

∂x
+
σd

nd

∂P

∂x
− Zd

∂φE

∂x
+
∂φG

∂x
= 0 (3)

∂P

∂t
+ ud

∂P

∂x
+ γP

∂ud

∂x
= 0 (4)

∂2φE

∂x2
= Zdnd + ne − ni (5)

∂2φG

∂x2
= 4πGmdnd (6)

where nd and ud are the dust number density
and dust fluid velocity normalized to Zd0nd0 and
Cd(dust acoustic speed) =

√
Zd0Teff /md with Teff =

Zd0nd0TiTe/(ni0Te +ne0Ti);Ti, Te being the ion and elec-
tron temperature and md the dust mass; φE(φG) is
the electrostatic (gravitational) potential normalized to
Teff /e(C2

d) with e being the elementary charge; P is the
dust pressure normalized to nd0Td; γ = (2 + N)/N with
N being the number of degrees of freedom (N = 1
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for one dimensional case and N = 3 for three dimen-
sional case). Also σd = Td/(Zd0Teff ) and G the univer-
sal constant of gravitation. Moreover, the space coordi-
nate (x) and time (t) are normalized to the Debye length
λDd =

√
Teff /4πZd0nd0e2 and the inverse of the dust

plasma frequency ωpd =
√

4πZ2
d0e

2nd0/md.
In the dynamical system, some of the electrons are at-

tached to form charged dust grains and some remaining
are bounded back and forth in the potential well loosing
energy continuously and thereby trapped. Schamel [42]
presented a new method for constructing a smooth dis-
tribution for the trapped particles. The validity of such a
distribution function for a magnetized plasma is discussed
by Bujarbarua et al. [43]. The number density of the non-
isothermal electrons in normalized form is obtained by
taking first moment of Schamel’s distribution function as:

ne(φE) =
ne0

nd0Zd0

[

exp(Γ )erfc(
√
Γ ) +

1
√|βh|

×

⎧
⎪⎨

⎪⎩

exp(Γβh)erf(
√
Γβh) βh ≥ 0

2√
π

exp(Γβh)
∫√−Γβh

0
exp(t2)dt βh < 0

⎤

⎥
⎦ (7)

where Γ = eφE/Te, βh = Te/Tt with Tt the trapped
electron temperature. The electron density includes three
types of distributions namely, (i) The Maxwellian where
βh → 1 (ii) the flat topped one where βh = 0 and (iii) a
hole in the trapped region representing a vortex type dis-
tribution where βh < 0. Now expanding equation (6) for
small arguments by Taylor series we write the expression
for ne [38] as

ne = ν[exp(sσiφE) −G(sσiφE)] (8)

where

G(x) =
n∑

k=1

[
2k+1bkx

(2k+1)/2/
∏

(2k + 1)
]

(9)

with bk = (1 − βk
h)/

√
π. Thus the isothermality and

nonisothermality of electrons are described by imposing
bk = 0 and 0 < bk < 1/

√
π respectively. On the other

hand, the ion density distribution is assumed to describe
by the following

ni = µ
(
1 + βφE + βφ2

E

)
exp(−sφE) (10)

where β = 4η/(1 + 3η) with η being a parameter de-
termining the number of nonthermal ions present in our
plasma model. Mendoza et al. [12] used such type of
distribution for nonthermal ions in a dusty plasma and
they found that nonthermal ions change the nature of the
DA solitary waves and support the co-existence of large
amplitude compressive and rarefactive solitary waves.
Also, Mamun [15] using the same distribution in a self-
gravitating dusty plasma found that the effects of nonther-
mal ions play a role in stabilizing the electrostatic modes
and counter the gravitational condensation of the dust

grains. In equations (8) and (10) the following dimension-
less variables are used:

ν = ne0/Zd0nd0, µ = ni0/Zd0nd0,

σi = Ti/Te, s = 1/(µ+ σiν) (11)

where ν and µ are connected through the relation

µ− ν = 1. (12)

We note that Zd appearing in equations (3) and (5) are not
constant but varies with space and time and so the dust-
charge dynamics is governed by the following normalized
equations:

(
∂Zd

∂t
+ ud

∂Zd

∂x

)
= − τd

Zd0e
(Ie + Ii) (13)

where τd = ω−1
pd is the hydrodynamic time scale. Assume

that the streaming velocities of the electrons and the ions
are much smaller than their thermal velocities, the elec-
tron and ion currents (Ie, Ii) arriving on the surface of the
spherical dust grains with radius r due to thermal fluxes
of electrons and ions are given as

Ie = −πr2e
√

8Te

πme
ne exp(sσiΨ) (14)

Ii = πr2e

√
8Ti

πmi
ni(1 − sΨ) (15)

where Ψ = eΦ/Teff ; Φ = −Zde/C being the dust grain
surface potential relative to the plasma potential φE and
C = r exp(−r/λD) the capacitance. The applicability of
the charging equation (13) for the case of strong nonlinear-
ity and particle trapping is discussed in the Appendix B.
Also, the equilibrium dust surface potential Ψ0(= Ψ/Zd)
can be obtained from the equilibrium current balance
equation dZd/dt = 0 as:

Ψ0 = ln [αδ(1 − sΨ0)] /sσi (16)

where

α =
√
σi/µi; µi = mi/me ≈ 1836; δ = ni0/ne0. (17)

3 Nonlinear dust-acoustic wave

In order to study the dynamics of the large ampli-
tude DA waves in presence of nonadiabatic dust-charge
fluctuations, self-gravitation, trapped electrons and non-
isothermal ions we assume that all the variables in equa-
tions (2–6, 13) depend only on a single one ξ = x −Mt,
where M is the Mach number (the velocity of the moving
frame normalized to the DA speed Cd). In this stationary
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frame these equations become

−M
∂nd

∂ξ
+

∂

∂ξ
(ndud) = 0 (18)

−M
∂ud

∂ξ
+ ud

∂ud

∂ξ
+
σd

nd

∂P

∂ξ
− Zd

∂φE

∂ξ
+
∂φG

∂ξ
= 0 (19)

−M
∂P

∂ξ
+ ud

∂P

∂ξ
+ 3P

∂ud

∂ξ
= 0 (20)

∂2φE

∂ξ2
= Zdnd + ne − ni (21)

∂2φG

∂ξ2
= 4πGmdnd (22)

M
∂Zd

∂ξ
=

nd

ωpdZd0e
(Ie + Ii) (23)

where we have taken γ = 3 for N = 1 (for isothermal case
γ = 1 and for adiabatic γ = 3).

Now under the appropriate boundary conditions, viz.
nd → 1, ud → 0, P → 1 at ξ → ±∞, equations (18) and
(20) can be integrated to yield

ud = M(1 − 1/nd) (24)

P = n3
d. (25)

We eliminate nd from equations (19) and (24) and multi-
plying the resulting equations so obtained by 2 and then
subtract from the equation (20) multiplied by σd/M to
obtain

dnd

dξ
=

n3
d

3σdn4
d −M2

[
Zd
dφE

dξ
− dφG

dξ

]
. (26)

Now, further integration of equation (26) with respect to
ξ and use of the boundary conditions P → 1, ud → 0,
φE , φG → 0 as ξ → ±∞ yield a biquadratic equation for
nd as

3σdn
4
d − (3σd +M2 + 2V )n2

d +M2 = 0 (27)

where

V = Vd(φE) − φG, Vd(φE) =
∫ φE

0

ZddφE . (28)

Therefore the solutions of equation (27) are given by

nd =
[
(3σd +M2 + 2V )±√(3σd +M2 + 2V )2−12σdM2

6σd

]1/2

.

(29)

For the real value of nd we must have

φG ≤ 1
2
(M2 + 3σd) −M

√
3σd + Vd(φE). (30)

Thus, from equation (29) we find that as φG → (φG)max,
nd →

√
M/

√
3σd. Which shows that the dust density in-

creases as the Mach number increases for fixed σd. Such

dust condensations may initiate the gravitational collapse
in interstellar dust cloud leading to star formation [43].
On the other hand, as the dust density increases it follows
from equation (23) that ud approaches the corresponding
value of M , i.e., the dust fluid velocity will tend to move
with the phase velocity, an effect that will cause the elec-
trons and ions to accumulate in the dense region.

Now letting Zd = 1 + Zd1 and using the expressions
(8–10), (14–16) we obtain from equations (20–22) and (25)
the following system of equations with higher nonlinear-
ities, which govern the dynamics of the large amplitude
dust-acoustic waves in our plasma model

d2φE

dξ2
= (1 + Zd1)nd + ν[exp(sσiφE) −G(sσiφE)]

− µ(1 + βφE + βφ2
E) exp(−sφE) (31)

d2φG

dξ2
= Zd0ζ

2nd (32)

dZd1

dξ
= −βdiss/(Zd0nd0)2

Mωpd
[exp(sσiψ0Zd1)

× (exp(sσiφE) −G(sσiφE))

− (1 + βφE + βφ2
E)(1 − sψ0Zd1/(1 − sψ0))

× exp(−sφE)] (33)

dnd

dξ
=

n3
d

3σdn4
d −M2

[
(1 + Zd1)

dφE

dξ
− dφG

dξ

]
(34)

where ζ = ωjd/ωpd is the Jeans to plasma frequency ra-
tio with ωjd =

√
4πGmdnd0 being the Jeans frequency,

and βdiss = (|Ii0|/e)(nd0/ni0) represents a dissipation rate
that is similar to collisional dissipation. It can lead to
damping or generation of waves depending on the circum-
stances.

We numerically integrate the equations (31–34) by the
fifth order Runge-Kutta-Fehlberg method starting with
the small perturbation 0.02 each for φE , φG, nd from the
equilibrium at ξ = 0. Since the right hand expressions of
equations (31–34) are explicitly free from ξ we can take
ξ = 0 as the upstream point and integrate upto large pos-
sible positive value of ξ. The simulation parameters that
are typical for the photoassociation regions separating H II
regions from dense molecular clouds [48] taken as follows:
Te = 30 K, Ti = 10 K, Td = 1 K, ni0 = 2 × 10−3 cm−3,
nd0 = 5 × 10−7 cm−3, Zd0 = 2000, md = 10−11 g,
a = 10−4 cm. It is found that the perturbations develop
into shocks provided the Mach number has the extreme
values depending on the parameters σi, β, βh. Figures 1–7
depict the behaviour of electrostatic potential, dust num-
ber density and dust charge for different values of mass
to charge ratio rjp = ωjd/ωpd (Figs. 1–4) and for different
β, βh (Figs. 5–7). We find that as the ratio rjp < 1 in-
creases the shock wave transits from oscillatory to mono-
tonic one. Figures 2, 3 show the density profiles in the
shocks, where the wave steepening turns into a monotonic
shock of the classic shape. The dust number density and
dust charge number enhance for rjp = 0.24, 0.81 (Figs. 3
and 4) when the self-gravitational influence is strong. In
Figure 5 for rjp = 0.81, as the percentage of fast particles
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Fig. 1. The electrostatic potential (φE), dust number density
(nd) and the dust charge (Zd1) profiles (oscillatory) in a shock
wave at fixed Zd0 = 103, rjp = 5.38 × 10−4, σd = 1.79 × 10−3,
σi = 0.33, β = 0.1, βh = 0.4, M = 0.9 showing that the
subsonic flow can exist.

Fig. 2. The same as in Figure 1 with Zd0 = 200, rjp = 2.69×
10−2, σd = 4.47× 10−2 , σi = 0.33, M = 10.0 (other parameter
values remain the same as Fig. 1), showing that the supersonic
flow exists and the dust density transits form oscillatory to the
monotonic shock on the downstream side.

(β) = 0.5 increases and the free to trapped electron tem-
perature ratio (βh = 0.2) decreases the φE , Zd show the
behaviour of growing oscillations and the dust number
density remains constant on the far downstream side. Fig-
ure 6 shows that for fixed rjp = 0.81, β = 0.5, as βh in-
creases from 0.2 to 0.4 nd exploids to nearly 1.5×104 cm−3

and Zd to −1.8 × 105 on the downstream. From Figure 7
we find that for fixed rjp = 0.81, βh = 0.2, as β increases
from 0.5 to 0.7 the dust density again steepens and turns
into monotonic shock on the downstream.

Fig. 3. The same as in Figure 1 with rjp = 0.24, M = 3.0
(other parameter values remain the same as Fig. 2), showing
that the wave steepens and the oscillations behind the shock
increase and the dust density becomes large in 1.2 < ξ < 1.4.

Fig. 4. The same variations as Figure 1, but for rjp = 0.81,
M = 30.0 (other parameter values remain the same as Fig. 2),
showing the monotonic shock for the density profile and the
magnitude of the dustcharge becomes large on the downstream.

4 Adiabatic dust-charge variation: energy-like
equation

However, self-gravitation is important for astrophysical
scenarios, there may be the case in space where the dust
charging time scale τch is of the order of 10−6−10−4 s [25],
so that on the hydrodynamic time scale (τd), the dust
charge can quickly reach local equilibrium at which the
electron and ion currents Ie and Ii give Ie + Ii ≈ 0, so
that we have

exp(sσiΨ) =
αδ(1 − sΨ) exp(−sφE)(1 + βφE + βφ2

E)
exp(sσiφE) −G(sσiφE)

.

(35)
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Fig. 5. The same profiles as Figure 1, but for different β = 0.5,
βh = 0.2, M = 15.0 (other parameter values remain the same
as Fig. 4), showing that the φE, Zd1 become oscillatory and the
dust density increases on the upstream side and the magnitude
of the dustcharge decreases on the downstream.

Substitutions of the normalized number densities of elec-
trons, ions and dusts as well as dust charge number into
the Poisson equations (21) and (22) lead to the following
coupled system

∂2φG

∂ξ2
= η2/U(φE , φG,M) (36)

∂2φE

∂ξ2
= Zd(φE)/U(φE , φG)

+ ν [exp(sσiφE) −G(sσiφE)]

− µ
(
1 + βφE + βφ2

E

)
exp(−sφE) (37)

where

U(φE , φG) =

√

1 +
2(Vd − φG)
M2 − 3σd

, η2 = Zd0

ω2
jd

ω2
pd

(38)

In order to find Vd it is necessary to find an explicit ex-
pression for Zd which is obtained by the perturbation tech-
nique upto the cubic order of φE as:

Zd(φE) = 1 +

(

γ1φE +
3
2
γ2φ

3/2
E

+2γ3φ
2
E +

5
2
γ4φ

5/2
E + 3γ5φ

3
E

)/

Ψ0. (39)

The expressions for γ′s are given in the Appendix A.
The system of equations (36) and (37) being a

pair of ordinary second order differential equations with
strong nonlinearities, describe the stationary modes of our
dusty plasma depending on the plasma parameters viz.,
β, βh, σi, σd, Zd, δ etc. The higher nonlinearity feature and

Fig. 6. The same profiles as Figure 1, but for different βh = 0.4
(other parameter values remain the same as Fig. 5), showing
the enhancement of dust number density and the magnitude
of the dust charge. nd, Zd1 exploid to 1.5× 104 and −1.8× 105

respectively.

Fig. 7. The same profiles as Figure 1, but for different β = 0.7
(other parameter values remain the same as Fig. 5), showing
that for nd the oscillations behind the monotonic shock in-
crease and the magnitude of the dust charge decrease on the
downstream.

structure of these equations prevent any hope for exact so-
lution. However, it is possible to construct an exact con-
servation law by introducing the variables:

φ̄G = iφG, φ̄E = η2φE , ξ̄ = ξη (40)

where η2 = Zd0ω
2
jd/ω

2
pd, and the system then takes the

following Hamiltonian form

d2φ̄G

dξ̄2
= − ∂W

∂φ̄G
,
d2φ̄E

dξ̄2
= − ∂W

∂φ̄E
(41)

where W (φE , φG) is the pseudopotential. From equa-
tion (41) one can immediately obtain the energy-like
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integral equation as

1
2

(
dφ̄E

dξ

)2

+
1
2

(
dφ̄G

dξ

)2

+W (φ̄E , φ̄G) = 0 (42)

which can now be converted into in terms of the original
variables as

I ≡ −1
2

(
dφE

dξ

)2

+
1
2

(
dφG

dξ

)2

+W (φE , φG) = 0 (43)

where the potential W is given by

W (φE , φG) = (M2 − 3σd) [1 − U(φE , φG)]

+
ν

sσi

[

1−exp(sσiφE) +
∫ φE

0

G(sσiφE)dφE

]

+
µ

s

[

1 − exp(−sφE) − β
{
φ2

E + (1 + 2/s)

× (φE + 1/s)
}

exp(−sφE) +
β

s
(1 + 2/s)

]

.

(44)

Equation (43) is our new form of energy-like integral equa-
tion with the new pseudopotential W with strong nonlin-
earities. The second term in equation (43) and the term
φG in W arise due to the action of the self-gravitational
force. Also, the terms proportional to β in W are due to
the presence of fast particles in the plasma. In absence of
nonthermal ions and the self-gravitation, i.e., simply for
β = 0, φG = dφG/dξ = 0 one can recover the energy
equation as in reference [38]. It is to be mentioned that
in the derivation of equation (43) we have considered the
adiabatic dust charge variation, i.e. when τch/τd = 0 and
no such pseudopotential can exist when nonadiabaticity of
dust charge variation is taken into account. For ω2

jd �= 0,
equations (36) and (37) does not have any steady state
solution, whereas for ω2

jd = 0, there exists a steady state
solution, viz. φE = 0 = Zd1, nd = 1. Unfortunately, the
level surfaces of the integral I are never convex which pre-
vents any hope for its use as a Lyapunov function for the
stability analysis of the system at the critical points. How-
ever, for ω2

jd = 0, some further insight about the stability
of the system can be obtained by linearizing the system of
equations (36) and (37) around the steady state solution,
which is also rather difficult to do so analytically, since the
right side of equation (37) contains various typical powers
of φE . Hence we restrict here to small φE , i.e. keeping the
first order terms for φE and taking dφE/dξ = dφG/dξ = 0
we obtain the following two possible homogeneous solu-
tions for arbitrary values of φG0 and φE0 respectively:

φE0 = −1/
[
γ1

ψ0
+ (sσi − β + s)

(
1 − 2φG0

M2 − 3σd

)]
(45)

φG0 =
[1 + (γ1/ψ0 + sσi − β + s)φE0](M2 − 3σd)

2(sσi − β + s)φE0
. (46)

The linear stability analysis is assessed by assuming

φE = φE0 + α0 exp(kcξ), φG = φG0 + β0 exp(kcξ) (47)

Fig. 8. The three-dimensional view of the pseudopotential
W (φE, φG) for zd0 = 104, rjp = 0.48, β = 0.1, βh = 0.5.

for constants α0, β0, kc. The eigen values thus obtained
are given by

k2
c = o, [γ1/ψ0 + ν(sσi − β + s)]

+ (1 + γ1φE0/ψ0)
2α0

β0(M2 − 3σd)
. (48)

Which shows the existence of four eigen values around
the homogeneous equilibria of the linearized motion. For
purely oscillatory motion (neutral stability) we require
k2

c ≤ 0 with the case kc = 0 corresponding to the marginal
stability. A three-dimensional view of the pseudopotential
is shown in the Figure 8.

5 Conclusions

In our above analysis we have considered the station-
ary propagation of fully nonlinear arbitrary amplitude
dust-acoustic waves in an unmagnetized collisionless self-
gravitating plasma. We have employed nonthermally dis-
tributed ions and trapped electrons and hydrodynamic de-
scriptions for the warm dust fluid to derive a set of wave
equations with strong nonlinearities, which are then ulti-
mately integrated to solve numerically. An analytic solu-
tion for the dust density is derived and its limit of va-
lidity is reported. It is found that as the gravitational
potential gets maximized (i.e. φG → φGmax), the dust
density becomes proportional to the Mach number (i.e.
nd →

√
M/

√
3σd). Accordingly, the dust condensation

becomes very intense at M = Mmax, leading to the ini-
tiatiation of gravitational collapse. When the dissipation
caused by the self-gravitation is weak, the shock front ex-
hibits oscillatory nature, while for the stronger dissipation,
the shock transition is monotonic. The parameters β and
βh change the situation significantly. The former one plays
also a role to transit the growing oscillations into mono-
tonic shocks of the classic shape and the latter enhances
the dust number density and the dust charge number.
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γ1 = − (1 + σi − β/s)(1 − sΨ0)
1 + σi(1 − sΨ0)

, γ2 =
4
3

(sσ3
i )1/2(1 − sΨ0)

1 + σi(1 − sΨ0)
b1

γ3 =
s(1 − sΨ0)

2 (1 + σi(1 − sΨ0))
3

[

− (1 + σi)2 +
2β
s

(1 + σi(1 − sΨ0))
(

1 + σi

s
− (1 − s)σiΨ0

)]

γ4 = − 1
(1 + σi(1 − sΨ0))

[

(1 − sΨ0)σi

(
sσiγ2 − 4

3
b1γ1(sσi)3/2 − 8

15
b2(sσi)5/2 + sσiγ1γ2

)
+ (β − s)γ2

]

γ5 = − 1
18 (1 + σi(1 − sΨ0))

[

(1 − sΨ0)σi

{

s2σ2
i (1 + 3γ1 + γ3) + 3sσi(γ2

1 + γ2
2 + 2γ1γ3) + 6

(
γ3 − 4

3
γ2b1(sσi)3/2

)}

q

+ (1 − sΨ0)

{

6(1 − γ1)β − 3(1 − 2γ1)βs+ s2(1 − 3γ1)

}

+ γ3(β − s)

]

In the adiabatic dust-charge variation the dynamics of the
DA waves is governed by a coupled nonlinear second or-
der differential equations for both electrostatic and gravi-
tational potentials, which in turn, give the exact constant
of motion. The linear stability analysis is assessed for a
particular case where ω2

jd = 0 and for small φE . It is
found that the nonlinear DA wave is at the marginal sta-
bility point. It is to be mentioned that the trapping of ions
which is the largest effect caused by the ion-neutral colli-
sions is important in the nonlinear analysis. However, this
is not the case studied here, and this effect will be con-
sidered in our next communication. The existence of such
dust-acoustic shock waves can be relevant in the study of
astrophysical and laboratory dusty plasmas.

The authors are grateful to the referees for their valuable sug-
gestions.

Appendix A

Here we give the expressions for the γ′s

see equations above.

Appendix B

Expressions (14) and (15) were derived on the basis of the
orbit-motion-limited (OML) theory [40]. This is the tradi-
tational method used to determine the charge acquired by
a dust particle in a plasma. Actually, this theory has its
origin in the probe theory for the case of an infinitely large
sheath [49]. In this theory it was assumed that some of the
ions in any given energy range hit the probe at grazing in-
cidence. This may not be the case. However, the limiting
orbit, i.e. that of ion which is just captured by the probe,
may graze a mathematical surface that has a greater ra-
dius than that of the probe. Thus we have to consider the
concept of an absorption radius or effective potential bar-
rier, which effectively replaces the radius of the probe [50],

and the absorption radius is not the same as the effective
radius of the “target area”. If all the mathematical spher-
ical surfaces outside the probe are grazed by ions with a
certain energy range then we have

r(1 − V/V0)1/2 > rp(1 − Vp/V0)1/2

or,
V0 − V

V0 − Vp
>
(rp
r

)
(49)

where hp = rp(1 − Vp/V0)1/2 is the effective radius of the
“target area” presented by the dust particle, eV0 is the
initial energy of ion and Vp the velocity at the probe sur-
face. If this condition is to hold for all the ions, including
those with small initial energies then

V

Vp
>
(rp
r

)
. (50)

If the OML theory is to valid, the potential distribution
must satisfy the condition (50), otherwise we have to con-
sider absorption radii (which are different for ions of dif-
ferent energies). It has been shown that the OML theory is
in fact never valid for Maxwellian plasmas, at least when
Ti ≤ Te [51].

More recently, it has been emerged that the expres-
sions (14, 15) are correct only in particular limits, viz.
when the size of the dust grains are small compared to
the typical Debye length (λD) of the system and, above
all, only for isolated dust grains (r < λD < d, d being the
average intergrain spacing). The validity of the OML the-
ory has been extensively scrutinized by Allen et al. [41].
It was found that as long as the grain size is much smaller
than the Debye length and for typical values of the tem-
perature ratio σi, OML theory remains valid [42]. This is
because the number of ions having an absorption radius
is very small. Thus the application of equation (13) is not
greatly in error. Moreover, similar charging equation has
extensively been used by several authors in the nonlin-
ear analysis even in presence of particle trapping (e.g. see
reference [28,38,39] Sk E1Labany).
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